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 Linear regression is a simple approach to supervised learning. It assumes that 

the dependence of 𝑌 on 𝑋1, 𝑋2, …𝑋𝑝 is linear

 True regression functions are never linear!

 Although it may seem overly simplistic, linear regression is extremely useful 

both conceptually and practically

Linear regression
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Linear regression for the advertising data

 Consider the advertising data, questions we might ask:

1. Is there a relationship between advertising budget and sales?

2. How strong is the relationship between advertising budget and sales?

3. Which media contribute to sales?

4. How accurately can we predict future sales?

5. Is the relationship linear?

6. Is there synergy among 

the advertising media?
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https://www.kaggle.com/datasets/ya

sserh/advertising-sales-dataset

https://www.kaggle.com/datasets/ashydv/advertising-dataset
https://www.kaggle.com/datasets/yasserh/advertising-sales-dataset


(1) Simple linear regression using a single predictor 𝑋

 We assume a model
𝑌 = 𝛽0 + 𝛽1𝑋 + 𝜖,

where 𝛽0 and 𝛽1 are two unknown constants that represent the intercept and slope, also known 

as coefficients or parameters, and 𝜖 is the error term which is assumed to be i.i.d. that follows 

the normal distribution. (LINE)

𝑌 ~ 𝑁 𝛽0 + 𝛽1𝑋, 𝜎
2 , 𝜎2 = 𝑉𝑎𝑟 𝜖

𝑌|𝑋~𝑁 𝛽0 + 𝛽1𝑋, 𝜎
2 , 𝜎2 = 𝑉𝑎𝑟 𝜖

 Given 𝛽0 and 𝛽1 for the model coefficients, we predict future sales using
ො𝑦 = መ𝛽0 + መ𝛽1𝑥,

where ො𝑦 indicates a prediction of 𝑌 on the basis of 𝑋 = 𝑥. The hat symbol denotes an 

estimated value
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https://stats.stackexchange.com/questions/246047/independent-variable-random-variable
https://online.stat.psu.edu/stat415/lesson/7/7.4


Estimation of the parameters by least squares

 There are many ways of measuring closeness. We use least squares here

 Let ො𝑦𝑖 = መ𝛽0 + መ𝛽1𝑥𝑖 be the prediction for 𝑌 based on the 𝑖th value of 𝑋. Then 𝑒𝑖 = 𝑦𝑖 − ො𝑦𝑖
represents the 𝑖th residual

 We define the residual sum of squares (RSS) as

𝑅𝑆𝑆 = 𝑒1
2 + 𝑒2

2 +⋯+ 𝑒𝑛
2

= (𝑦1 − መ𝛽0 − መ𝛽1𝑥1)
2+(𝑦2 − መ𝛽0 − መ𝛽1𝑥2)

2+⋯+ (𝑦𝑛 − መ𝛽0 − መ𝛽1𝑥𝑛)
2

 The least squares approach (Maximum likelihood) chooses መ𝛽0 and መ𝛽1 to 

minimize the RSS. The minimizing values can be shown to be

መ𝛽1 =
σ𝑖=1
𝑛 (𝑥𝑖− ҧ𝑥)(𝑦𝑖−ത𝑦)

σ𝑖=1
𝑛 (𝑥𝑖− ҧ𝑥)2

, መ𝛽0 = ത𝑦 − መ𝛽1 ҧ𝑥

 where ത𝑦 =
1

𝑛
σ𝑖=1
𝑛 𝑦𝑖 and ҧ𝑥 =

1

𝑛
σ𝑖=1
𝑛 𝑥𝑖 are the sample mean

 Scale does not affect the estimation of ො𝑦
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https://dafriedman97.github.io/mlbook/content/c1/s1/likelihood_maximization.html#simple-linear-regression
https://dafriedman97.github.io/mlbook/content/c1/s1/loss_minimization.html#parameter-estimation
https://stats.stackexchange.com/questions/29781/when-conducting-multiple-regression-when-should-you-center-your-predictor-varia


Example: Advertising data

 The least squares fit for the regression of sales onto TV. In this case, a linear 

fit captures the essence of the relationship, although it is deficient in some part 

of the plot
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Assessing the Accuracy of the Coefficient Estimates

 𝑌 = 2 + 3𝑋 + 𝜖
 Red line indicates the population regression line 

 If we want to estimate the population mean and the standard error

 ො𝜇 =
1

𝑛
σ𝑥𝑖

 𝑉𝑎𝑟 ො𝜇 = SE( ො𝜇)2 =
𝜎2

𝑛

 𝜎 is standard deviation of 𝑥𝑖’s
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https://en.wikipedia.org/wiki/Standard_error


Assessing the Accuracy of the Coefficient Estimates

 The standard error of an estimator reflects how it varies under repeated 

sampling. We have

𝑆𝐸( መ𝛽1)
2 =

𝜎2

σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)2

, 𝑆𝐸( መ𝛽0)
2 = 𝜎2

1

𝑛
+

ҧ𝑥2

σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)2

 where 𝜎2 = 𝑉𝑎𝑟 𝜖 , ො𝜎2 =
𝑅𝑆𝑆

𝑛−2
=

1

𝑛−2
σ𝑖=1
𝑛 (𝑦𝑖 − ො𝑦𝑖)

2 = (𝑅𝑆𝐸)2

 These standard errors can be used to compute confidence intervals

 A 95% confidence interval is defined as a range of values such that with 95% probability, 

the range will contain the true unknown value of the parameter. It has the form
መ𝛽1 ± 2 × 𝑆𝐸( መ𝛽1)
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https://online.stat.psu.edu/stat415/lesson/7/7.5
https://stats.stackexchange.com/questions/266885/how-can-i-get-the-variance-sigma2-for-linear-regression-under-homoscadastic
https://seeing-theory.brown.edu/frequentist-inference/index.html#section2


Confidence intervals — continued

 That is, there is approximately a 95% chance that the interval
[ መ𝛽1 − 2 · 𝑆𝐸 መ𝛽1 , መ𝛽1 + 2 · 𝑆𝐸 መ𝛽1 ]

will contain the true value of 𝛽1 (under a scenario where we got repeated samples like the 

present sample)

 For the advertising data, the 95% confidence interval for 𝛽1 is [0.042, 0.053] 

and for 𝛽0 is [6.130, 7.935] 

 In the absence of advertising, sales will on average fall somewhere between 6,130 and 

7,935 units

 For each $1,000 increase in television advertising, there will be an average increase in sales 

of between 42 and 53 units
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Hypothesis testing

 Standard errors can also be used to perform hypothesis tests on the coefficients 

 The most common hypothesis test involves testing the null hypothesis of

𝐻0 : There is no relationship between 𝑋 and 𝑌

versus the alternative hypothesis

𝐻𝑎 : There is some relationship between 𝑋 and 𝑌

 Mathematically, this corresponds to testing

𝐻0 : 𝛽1 = 0 versus 𝐻𝑎 : 𝛽1 ≠ 0

since if  𝛽1 = 0 then the model reduces to Y = 𝛽0 + ϵ, and 𝑋 is not associated with 𝑌
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Hypothesis testing — continued

 To test the null hypothesis, we compute 

a t-statistic, given by

𝑡 =
መ𝛽1 − 𝛽1

𝑆𝐸 መ𝛽1
=

መ𝛽1 − 0

𝑆𝐸 መ𝛽1

 This will have a 𝑡-distribution with 𝑛 − 2
degrees of freedom, assuming 𝛽1 = 0

 Using statistical software, it is easy to 

compute the probability of observing 

any value equal to |𝑡| or larger. We call 

this probability the 𝑝-value
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𝑝-value

https://www.geeksforgeeks.org/difference-between-one-tailed-and-two-tailed-tests/

https://stats.stackexchange.com/questions/60074/wald-test-for-logistic-regression
https://stats.stackexchange.com/questions/117406/proof-that-the-coefficients-in-an-ols-model-follow-a-t-distribution-with-n-k-d
https://www.geeksforgeeks.org/difference-between-one-tailed-and-two-tailed-tests/


Assessing the Overall Accuracy of the Model

 We compute the Residual Standard Error (RSE) (smaller is better)

𝑅𝑆𝐸 =
1

𝑛 − 2
𝑅𝑆𝑆 =

1

𝑛 − 2


𝑖=1

𝑛

(𝑦𝑖 − ො𝑦𝑖)
2 = ෝσ

where the residual sum-of-squares is 𝑅𝑆𝑆 = σ𝑖=1
𝑛 (𝑦𝑖 − ො𝑦𝑖)

2

 R-squared or fraction of variance explained is (larger is better)

𝑅2 =
𝑇𝑆𝑆 − 𝑅𝑆𝑆

𝑇𝑆𝑆
= 1 −

𝑅𝑆𝑆

𝑇𝑆𝑆

where 𝑇𝑆𝑆 = σ𝑖=1
𝑛 (𝑦𝑖 − ത𝑦)2 = σ𝑖=1

𝑛 (𝑦𝑖 − ො𝑦𝑖)
2 + σ𝑖=1

𝑛 ( ො𝑦𝑖 − ത𝑦)2 is the total sum of squares

 It can be shown that in this simple linear regression setting that 𝑅2 = 𝑟2, where 𝑟 is the 

correlation between 𝑋 and 𝑌 (Exercise 7):

𝑟 = 𝐶𝑜𝑟 𝑋, 𝑌 =
σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)(𝑦𝑖 − ത𝑦)

σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)2 σ𝑖=1

𝑛 (𝑦𝑖 − ത𝑦)2
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https://en.wikipedia.org/wiki/Explained_sum_of_squares


Advertising data results
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𝐹 =
(𝑇𝑆𝑆 − 𝑅𝑆𝑆)/𝑝

𝑅𝑆𝑆/(𝑛 − 𝑝 − 1)
~𝐹𝑝,𝑛−𝑝−1



Extension of simple linear regression
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(2) Multiple Linear Regression

 Instead of fitting three simple linear regression model for each predictor 

 Here our model is 
𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑝𝑋𝑝 + 𝜖

 We interpret 𝛽𝑗 as the average effect on 𝑌 of a one unit increase in 𝑋𝑗, holding 

all other predictors fixed. In the advertising example, the model becomes

𝑆𝑎𝑙𝑒𝑠 = 𝛽0 + 𝛽1 × 𝑇𝑉 + 𝛽2 × 𝑟𝑎𝑑𝑖𝑜 + 𝛽3 × 𝑛𝑒𝑤𝑠𝑝𝑎𝑝𝑒𝑟 + 𝜖
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Estimation and Prediction for Multiple Regression

 Given estimates መ𝛽0, መ𝛽1, … መ𝛽𝑝, we can make predictions using the formula

ො𝑦 = መ𝛽0 + መ𝛽1𝑥1 + መ𝛽2𝑥2 +⋯+ መ𝛽𝑝𝑥𝑝

 We estimate መ𝛽0, መ𝛽1, … መ𝛽𝑝 as the value that minimize the sum of squared 

residuals

𝑅𝑆𝑆 =

𝑖=1

𝑛

(𝑦𝑖 − ො𝑦𝑖)
2 =

𝑖=1

𝑛

(𝑦𝑖 − መ𝛽0 − መ𝛽1𝑥𝑖1 − መ𝛽2 𝑥𝑖2 −⋯− መ𝛽𝑝𝑥𝑖𝑝)
2

 This is done using standard statistical software. The values መ𝛽0, መ𝛽1, … መ𝛽𝑝 that 

minimize RSS are the multiple least squares regression coefficient estimates.

 The standard error and t-statistic can also be obtained with linear algebra (see ESL)
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https://dafriedman97.github.io/mlbook/content/c1/s1/loss_minimization.html#id2
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Results for advertising data
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Correlation matrix

https://www.causeweb.org/cause/resources/fun

/cartoons/ice-cream-sales-and-shark-sightings

https://www.causeweb.org/cause/resources/fun/cartoons/ice-cream-sales-and-shark-sightings


Some important questions

1. Is at least one of the predictors 𝑋1, 𝑋2, …𝑋𝑝 useful in predicting the response?

2. Do all the predictors help to explain 𝑌, or is only a subset of the predictors 

useful?

3. How well does the model fit the data?

4. Given a set of predictor values, what response value should we predict, and 

how accurate is our prediction?
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Is at least one predictor useful?

 For the first question, we can use the F-statistic

𝐻0 : 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑝 = 0 versus 𝐻𝑎 : at least one 𝛽𝑗 ≠ 0

𝐹 =
(𝑇𝑆𝑆 − 𝑅𝑆𝑆)/𝑝

𝑅𝑆𝑆/(𝑛 − 𝑝 − 1)
~𝐹𝑝,𝑛−𝑝−1

 Note if linear model assumption is hold, 𝐸
𝑅𝑆𝑆

𝑛−𝑝−1
= 𝜎2 and if 𝐻0 hold, 𝐸ሼ(𝑇𝑆𝑆 −
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Is at least one predictor useful?

 To examine whether a particular set of 𝑞 variables are zeros or not

𝐻0 : 𝛽𝑝−𝑞+1 = 𝛽𝑝−𝑞+2 = ⋯ = 𝛽𝑝 = 0

we use 𝐹 =
(𝑅𝑆𝑆0−𝑅𝑆𝑆)/𝑞

𝑅𝑆𝑆/(𝑛−𝑝−1)

We fit a second model that uses all the variables except those last 𝑞 to get 𝑅𝑆𝑆0

 In the previous table of simple linear regression, 𝑞 = 1

 It seems likely that if any one of the 𝑝-values for the individual variables is 

very small, then at least one of the predictors is related to the response. Why 

should we care about the overall F-statistics?

 P-hacking!

21



Deciding on the important variables

 If 𝑝 > 𝑛, we cannot fit the multiple linear regression model using least squares 

and, therefore, can not use F-statistics!

 On the other hand, if we conclude on the basis of that 𝑝-value that at least one 

of the predictors is related to the response, then it is natural to wonder which 

are the guilty ones! 

 The most direct approach is called all subsets or best subsets regression: we 

compute the least squares fit for all possible subsets and then choose between 

them based on some criterion that balances training error with model size

 However, we often can’t examine all possible models, since they are 2𝑝 of them; for 

example, when 𝑝 = 40, there are over a billion models
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Deciding on the important variables - Forward selection

1. Begin with the null model — a model that only contains an intercept 

2. Fit 𝑝 simple linear regressions and add to the null model the variable that 

results in the lowest RSS

3. Add to that model the variable that results in the lowest RSS among all two-

variable models

4. Continue until some stopping rule is satisfied, for example when all 

remaining variables have a 𝑝-value above some threshold

23
https://lithub.com/youre-probably-misreading-robert-frosts-most-famous-poem/

https://lithub.com/youre-probably-misreading-robert-frosts-most-famous-poem/


Deciding on the important variables - Backward selection

1. Start with all variables in the model

2. Remove the variable with the largest 𝑝-value — that is, the variable that is 

the least statistically significant

3. The new (𝑝 − 1) −variable model is fit, and the variable with the largest 

𝑝 −value is removed

4. Continue until a stopping rule is reached. For instance, we may stop when all 

remaining variables have a significant 𝑝-value defined by some significance 

threshold
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Deciding on the important variables - Mixed selection

1. Begin with the null model, and as with forward selection, we add the variable 

that provides the best fit

2. If at any point the 𝑝-value for one of the variables in the model rises above a 

certain threshold, then we remove that variable from the model

3. Continue to perform these forward and backward steps until all variables in 

the model have a sufficiently low 𝑝-value, and all variables outside the model 

would have a large 𝑝-value if added to the model
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Deciding on the important variables - Mixed selection

 Mixed selection can remedy the following situations

 Backward selection cannot be used if 𝑝 > 𝑛, while forward selection can always be used

 Forward selection is a greedy approach and might include variables early that later become 

redundant

 Later, we discuss more systematic criteria for choosing an “optimal number” of 

members in the path of models produced by forward stepwise selection

 These include Mallow’s 𝐶𝑝, Akaike information criterion (AIC), Bayesian 

information criterion (BIC), adjusted 𝑅2 and Cross-validation (CV)
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Model fit and prediction

 It can be shown that 𝑅2 = 𝐶𝑜𝑟(𝑌, 𝑌) in this case

 𝑅2 will always increase when more variables are added to the model

 We compute the Residual Standard Error

𝑅𝑆𝐸 =
1

𝑛 − 𝑝 − 1
𝑅𝑆𝑆 =

1

𝑛 − 𝑝 − 1


𝑖=1

𝑛

(𝑦𝑖 − ො𝑦𝑖)
2 = ෝσ

 How close between 𝑌 and 𝑓(𝑋) can be quantified by the confidence interval

 Note that even if we knew 𝑓(𝑋)—that is, even if we knew the true values for 

𝛽0, 𝛽1, … , 𝛽𝑝—the response cannot be predicted perfectly because of 𝜖 (irreducible error)

 For the new prediction, how much will 𝑌 vary from 𝑌 ? We use prediction intervals to 

answer this question 
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Confidence interval versus prediction interval

 Prediction intervals are always wider than confidence intervals, because they 

incorporate both the error in the estimate for 𝑓(𝑋) (the reducible error) and the 

uncertainty as to how much an individual point will differ from the population 

regression plane (the irreducible error)

𝐶. 𝐼. = ො𝑦𝑖 ± 𝑡 ൗ𝛼 2
ෝσ (

1

𝑛
+

(𝑥𝑖 − ҧ𝑥)2

σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)2

)

𝑃. 𝐼. = ො𝑦𝑖 ± 𝑡 ൗ𝛼 2
ෝσ (1 +

1

𝑛
+

(𝑥𝑖 − ҧ𝑥)2

σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)2

)

 For multiple linear regression see here
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https://online.stat.psu.edu/stat415/lesson/8/8.1
https://online.stat.psu.edu/stat462/node/150/


(3) Other Considerations in the Regression Model

 Qualitative Predictors

 Some predictors are not quantitative but are 

qualitative, taking a discrete set of values

 These are also called categorical predictors 

or factor variables

 In the credit card dataset, in addition to the 

7 quantitative variables shown, there are 

four qualitative variables:  own (house 

ownership), student (student status), 

status (marital status), and region (East, 

West or South)
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https://islp.readthedocs.io/en/latest/datasets/Credit.html


Qualitative Predictors — continued

 Example: investigate differences in credit card balance between a person who 

has a house or not, ignoring the other variables. We create a dummy variable

𝑥𝑖 = ቊ
1 if 𝑖th person owns a house
0 if 𝑖th person does not own a house

 Resulting model:

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1 + 𝜖𝑖 = ቊ
𝛽0 + 𝛽1 + 𝜖𝑖 if 𝑖th person owns a house
𝛽0 + 𝜖𝑖 if 𝑖th person does not own a house
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Qualitative predictors with more than two levels

 With more than two levels, we create additional dummy variables. For example, 

for the region variable, we create two dummy variables. The first could be

𝑥𝑖1 = ቊ
1 if 𝑖th person is from the South
0 if 𝑖th person is not from the South

and the second could be

𝑥𝑖2 = ቊ
1 if 𝑖th person is from the West
0 if 𝑖th person is not from the West

 Then both of these variables can be used in the regression equation, in order to 

obtain the model

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + 𝜖𝑖 = ൞

𝛽0 + 𝛽1 + 𝜖𝑖 if 𝑖th person is from the South
𝛽0 + 𝛽2 + 𝜖𝑖 if 𝑖th person is from the West
𝛽0 + 𝜖𝑖 if 𝑖th person is from the East
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Qualitative predictors with more than two levels

 There will always be one fewer dummy variable than the number of levels. The 

level with no dummy variable — East in this example — is known as the 

baseline
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Extensions of the Linear Model

 Removing the additive assumption: interactions and nonlinearity

 Interactions:

 In our previous analysis of the Advertising data, we assumed that the effect on sales of 

increasing one advertising medium is independent of the amount spent on the other media

 For example, the linear model

𝑠𝑎𝑙𝑒𝑠 = 𝛽0 + 𝛽1 × 𝑇𝑉 + 𝛽2 × 𝑟𝑎𝑑𝑖𝑜 + 𝛽3 × 𝑛𝑒𝑤𝑠𝑝𝑎𝑝𝑒𝑟

states that the average effect on sales of a one-unit increase in TV is always 𝛽1, regardless of 

the amount spent on radio

 But suppose that spending money on radio advertising actually increases the 

effectiveness of TV advertising, so that the slope term for TV should increase as 

radio increases
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 Given a fixed budget of $100,000,

spending half on radio and half on

TV may increase sales!

 The positive residuals (those visible

above the surface) tend to lie along the

45-degree line, where TV and Radio

budgets are split evenly. The negative

residuals tend to lie away from this line

 In marketing, this is known as a synergy

effect, and in statistics, it is referred to as

an interaction effect

34

Extensions of the Linear Model



Modelling interactions — Advertising data

 The model takes the form
𝑠𝑎𝑙𝑒𝑠 = 𝛽0 + 𝛽1 × 𝑇𝑉 + 𝛽2 × 𝑟𝑎𝑑𝑖𝑜 + 𝛽3 × 𝑟𝑎𝑑𝑖𝑜 × 𝑇𝑉 + 𝜖
= 𝛽0 + (𝛽1 + 𝛽3 × 𝑟𝑎𝑑𝑖𝑜) × 𝑇𝑉 + 𝛽2 × 𝑟𝑎𝑑𝑖𝑜 + 𝜖

 The 𝑝-value for the interaction term 𝑟𝑎𝑑𝑖𝑜 × 𝑇𝑉 is extremely low, indicating that there is 

strong evidence for 𝐻𝑎: 𝛽3 ≠ 0

 The 𝑅2 for the interaction model is 96.8%, compared to only 89.7% for the model that 

predicts sales using TV and radio without an interaction term
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Modelling interactions — Advertising data

 (96.8 − 89.7)/(100 − 89.7) = 69% of the variability in sales that remains after 

fitting the additive model has been explained by the interaction term

 The coefficient estimates in the table suggest that an increase in TV advertising of $1, 000 is 

associated with increased sales of (𝛽1 + 𝛽3 × radio) × 1000 = 19 + 1.1 × radio units

 An increase in radio advertising of $1, 000 will be associated with an increase in sales of 

(𝛽2 + 𝛽3 × TV) × 1000 = 29 + 1.1 × TV units

 Sometimes it is the case that an interaction term has a very small 𝑝-value, but 

the associated main effects (in this case, TV and radio) do not

 The hierarchy principle: If we include an interaction in a model, we should also include the 

main effects, even if the 𝑝-values associated with their coefficients are not significant. 

Otherwise the interpretation may change
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Interactions between qualitative and quantitative variables

 Consider the Credit data set, and suppose that we wish to predict balance using 

income (quantitative) and student (qualitative)

 Without an interaction term, the model takes the form

𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑖 ≈ 𝛽0 + 𝛽1 × 𝑖𝑛𝑐𝑜𝑚𝑒𝑖 + ቊ
𝛽2 if 𝑖th person is a student
0 if 𝑖th person is not a student

= 𝛽1 × 𝑖𝑛𝑐𝑜𝑚𝑒𝑖 + ቊ
𝛽0 + 𝛽2 if 𝑖th person is a student
𝛽0 if 𝑖th person is not a student

 With interactions, it takes the form

𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑖 ≈ 𝛽0 + 𝛽1 × 𝑖𝑛𝑐𝑜𝑚𝑒𝑖 + ቊ
𝛽2 + 𝛽3 × 𝑖𝑛𝑐𝑜𝑚𝑒𝑖 if 𝑖th person is a student
0 if 𝑖th person is not a student

= ቊ
(𝛽0 + 𝛽2) + (𝛽1 + 𝛽3) × 𝑖𝑛𝑐𝑜𝑚𝑒𝑖 if 𝑖th person is a student
𝛽0 + 𝛽1 × 𝑖𝑛𝑐𝑜𝑚𝑒𝑖 if 𝑖th person is not a student
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Interactions between qualitative and quantitative variables
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Credit data; Left: no interaction between income and student

Right: with an interaction term between income and student



Non-linear effects of predictors

 Polynomial regression on Auto data
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https://islp.readthedocs.io/en/latest/datasets/Auto.html


Non-linear effects of predictors

 The figure suggests that
𝑚𝑝𝑔 = 𝛽0 + 𝛽1 × ℎ𝑜𝑟𝑠𝑒𝑝𝑜𝑤𝑒𝑟 + 𝛽2 × ℎ𝑜𝑟𝑠𝑒𝑝𝑜𝑤𝑒𝑟2 + 𝜖

may provide a better fit

 The 𝑅2 of the quadratic fit is 0.688, compared to 0.606 for the linear fit, and the 

𝑝-value for the quadratic term is highly significant

 If including horsepower2 led to such a big improvement in the model, why not 

include horsepower3, horsepower4, or even horsepower5?
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(4) Potential Problems

 When we fit a linear regression model to a particular data set, many problems 

may occur. Most common among these are the following:

1. Non-linearity of the response-predictor relationships

2. Correlation of error terms

3. Non-constant variance of error terms

4. Outliers

5. High-leverage points

6. Collinearity

In practice, identifying and overcoming these problems is as much an art as a 

science
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1. Non-linearity of the Data

 The linear regression model assumes that there is a straight-line relationship 

between the predictors and the response

 The prediction accuracy of the model can be significantly reduced if it is nonlinear

 If the true relationship is far from linear, then the conclusions that we draw are suspect

 Residual plots are a useful graphical tool for identifying non-linearity

 Ideally, the residual plot will show no discernible pattern. The presence of a pattern may 

indicate a problem with some aspects of the linear model
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 The red line is a smooth fit to the residuals, which is displayed in order to make it easier to 

identify any trends (mpg vs. horsepower)

 The residuals exhibit a clear U-shape in the left panel, which provides a strong indication 

of non-linearity in the data

 In contrast, the right-hand panel displays the residual plot that results from the model, 

which contains a quadratic term

 There appears to be little pattern in the residuals, suggesting that the quadratic term 

improves the fit to the data
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https://stats.stackexchange.com/questions/71352/why-are-residual-plots-constructed-using-the-residuals-vs-the-predicted-values


2. Correlation of Error Terms

 An important assumption of the linear regression model is that the error terms, 

𝜖1, 𝜖2, … , 𝜖𝑛, are uncorrelated. What does this mean?

 For instance, if the errors are uncorrelated, then the fact that 𝜖𝑖 is positive provides little or 

no information about the sign of 𝜖𝑖+1
 As an extreme example, suppose we accidentally doubled our data, leading to observations 

and error terms identical in pairs. If we ignored this, our standard error calculations would 

be as if we had a sample of size 2𝑛, when in fact we have only 𝑛 samples. Our estimated 

parameters would be the same for the 2𝑛 samples as for the 𝑛 samples, but the confidence 

intervals would be narrower by a factor of 2!

 If in fact there is correlation among the error terms, then the estimated standard errors will 

tend to underestimate the true standard errors. As a result, confidence and prediction 

intervals will be narrower than they should be
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2. Correlation of Error Terms

 In the top panel, we see the residuals 

from a linear regression fit to data 

generated with uncorrelated errors

 The residuals in the bottom panel 

show a clear pattern in the 

residuals—adjacent residuals tend to 

take on similar values

 The center panel illustrates a 

moderate case in which the residuals 

had a correlation of 0.5

45

Plots of residuals from simulated time series data sets generated

with differing levels of correlation 𝜌 between error terms for 

adjacent time point



3. Non-constant Variance of Error Terms

 It is often the case that the variances of the error terms are non-constant

 For instance, the variances of the error terms may increase with the value of the response. 

One can identify non-constant variances in the errors, or heteroscedasticity, from the 

presence of a funnel shape in the residual plot
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The right-hand panel displays the 

residual plot after transforming the 

response using log 𝑌



4. Outliers (unusual 𝑦)

 An outlier is a point for which 𝑦𝑖 is far from the value predicted by the model

 Outliers can arise for a variety of reasons, such as incorrect recording of an observation 

during data collection

 The red solid line is the least squares regression fit, while the blue dashed line is the least 

squares fit after removal of the outlier

 Observations whose studentized residuals are greater than 3 in absolute value are possible 

outliers
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Studentized

Residuals

𝑡𝑖 =
𝑒𝑖

𝑆𝐸 𝑒𝑖
= 𝑒𝑖/( ො𝜎 1 − ℎ𝑖)

https://en.wikipedia.org/wiki/Studentized_residual
https://en.wikipedia.org/wiki/Studentized_residual


4. Outliers

 It is typical for an outlier that does not have an unusual predictor value to have 

little effect on the least squares fit. However, it can cause other problems

 For instance, in this example, the RSE is 1.09 when the outlier is included in the regression, 

but it is only 0.77 when the outlier is removed

 Since RSE (𝜎) is used to compute all confidence intervals and 𝑝-values, such a dramatic 

increase caused by a single data point can have implications for the interpretation of the fit

 If we believe that an outlier has occurred due to an error in data collection or 

recording, then one solution is to simply remove the observation

 However, care should be taken since an outlier may instead indicate a deficiency with the 

model, such as a missing predictor
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5. High Leverage Points (unusual 𝑥)

 We just saw that outliers are observations for which the response 𝑦𝑖 is unusual 

given the predictor 𝑥𝑖
 In contrast, observations with high leverage have an unusual value for 𝑥𝑖
 In order to quantify an observation’s leverage, we compute the leverage statistic. A large 

value of this statistic indicates an observation with high leverage
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5. High Leverage Points

 For a simple linear regression,

ℎ𝑖 =
1

𝑛
+

(𝑥𝑖 − ҧ𝑥)2

σ
𝑖′=1
𝑛 (𝑥𝑖′ − ҧ𝑥)2

 In general, the leverage statistics is always between 1/𝑛 and 1, and the average leverage 

for all the observations is always equal to (𝑝 + 1)/𝑛

 So if a given observation has a leverage statistic that greatly exceeds (𝑝 + 1)/𝑛, then we 

may suspect that the corresponding point has high leverage

 A value whose absence would significantly change the regression equation is 

termed an influential observation

 Although an influential point will typically have high leverage, a high leverage point is not 

necessarily an influential point

 Comparison between influential and high leverage point
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5. High Leverage Points

 Cook's distance is a commonly used estimate of the influence of a data point 
σ𝑗=1
𝑛 ( ො𝑦𝑗 − ො𝑦𝑗(−𝑖))

(𝑝 + 1) ෝσ2
=

1

𝑝 + 1
𝑡𝑖
2 ℎ𝑖
1 − ℎ𝑖

ො𝑦𝑗(−𝑖) is the fitted response value obtained when excluding 𝑖

 An influence plot can be used to analyze data points
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 How to deal with influential 

points?

 It indicates data points that are 

particularly worth checking for 

validity

 It indicates regions of the design 

space where it would be good to 

be able to obtain more data points

https://online.stat.psu.edu/stat462/node/174/


6. Collinearity

 Collinearity refers to the situation in which two or more predictor variables are 

closely related to one another

 The concept of collinearity is illustrated below using the Credit data set

 In the left-hand panel, the limit and age appear to have no obvious relationship

 In contrast, in the right-hand panel, the predictor limit and rating are very highly 

correlated with each other, and we say that they are collinear
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6. Collinearity

 Figure below illustrates some of the difficulties that can result from collinearity

 The left-hand panel is a contour plot of the RSS associated with different possible 

coefficient estimates for the regression of balance on limit and age

 Each ellipse represents a set of coefficients that correspond to the same RSS, with ellipses 

nearest to the center taking on the lowest values of RSS

 The black dots and associated dashed lines represent the coefficient estimates that result in 

the smallest possible RSS—in other words, these are the least squares estimates
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6. Collinearity

 The contours run along a narrow valley; there is a broad range of values for the 

coefficient estimates that result in equal values for RSS

 Hence a small change in the data could cause the pair of coefficient values that yield the 

smallest RSS—that is, the least squares estimates—to move anywhere along this valley

 This results in a great deal of uncertainty in the coefficient estimates and thus reduce the 

power of  the hypothesis test

 The table below compares the coefficient estimates obtained from two separate 

multiple regression models

 In the first regression, both age and limit are highly significant with very small 𝑝-values

 In the second, the collinearity between limit and rating has caused the standard error for 

the limit coefficient estimate to increase by a factor of 12 and the 𝑝-value to increase to 

0.701
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6. Collinearity

 In other words, the importance of the limit variable has been masked due to the 

presence of collinearity

 A simple way is to use a correlation matrix to detect collinearity. Unfortunately, it is 

possible for collinearity to exist between three or more variables even if no pair of 

variables has a particularly high correlation
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 A better way to assess multicollinearity is to compute the variance inflation 

factor (VIF) using the formula

𝑉𝐼𝐹 መ𝛽𝑗 =
1

1 − 𝑅𝑋𝑗|𝑋−𝑗
2

where 𝑅𝑋𝑗|𝑋−𝑗
2 is the 𝑅2 from a regression of 𝑋𝑗 onto all of the other predictors

 In the Credit data, a regression of balance on age, rating, and limit indicates 

that the predictors have VIF values of 1.01, 160.67, and 160.59

 As a rule of thumb, a VIF value that exceeds 5 or 10 indicates a problem

 When faced with the problem of collinearity

1. Drop one of the problematic variables from the regression since it is redundant

2. The second solution is to combine the collinear variables together into a single predictor
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(5) Comparison of Linear Regression with K-Nearest Neighbors

 The non-parametric methods do not explicitly assume a parametric form for 

𝑓(𝑋) and thereby provide an alternative and more flexible approach 

 Here, we consider one of the simplest and best-known non-parametric methods, 𝐾-nearest 

neighbors regression (KNN regression)

 Given a value for 𝐾 and a prediction point 𝑥0, KNN regression first identifies the 𝐾
training observations that are closest to 𝑥0, represented by 𝑁0

 It then estimates 𝑓(𝑥0) using the average of all the training responses in 𝑁0 . In other words,

መ𝑓 𝑥0 =
1

𝐾


𝑥𝑖∈𝑁0

𝑦𝑖
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 The figure below illustrates two KNN fits on a data set with 𝑝 = 2 predictors

 𝐾 = 1 is shown in the left-hand panel, while the right-hand panel corresponds to 𝐾 = 9

 In general, the optimal value for 𝐾 will depend on the bias-variance tradeoff

 A small value for 𝐾 provides the most flexible fit, which will have low bias but high 

variance
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Comparison of Linear Regression with K-Nearest Neighbors

 The black solid lines represent 𝑓(𝑋), while the blue curves correspond to the 

KNN fits using 𝐾 = 1 and 𝐾 = 9 (𝑛 = 50)

 In this case, the 𝐾 = 1 predictions are far too variable, while the smoother 𝐾 = 9 fit is 

much closer to 𝑓(𝑋)

 However, since the true relationship is linear, it is hard for a non-parametric approach to 

compete with linear regression: a non-parametric approach incurs a cost in variance that is 

not offset by a reduction in bias
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 The blue dashed line in the left-hand panel of Figure represents the linear 

regression fit to the same data
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𝑀𝑆𝐸 =
𝑅𝑆𝑆

𝑛

 In the right-hand panel, the green 

solid line, plotted as a function of 

1/𝐾, represents the test set mean 

squared error (MSE) for KNN

 The KNN errors are well above 

the black dashed line, which is 

the test MSE for linear regression. 

When the value of 𝐾 is large, 

then KNN performs only a little 

worse than least squares 

regression in terms of MSE

Comparison of Linear Regression with K-Nearest Neighbors



 In the top row, the true relationship is close to 

linear

 The bottom row illustrates a more substantial 

deviation from linearity. In this situation, 

KNN substantially outperforms linear 

regression for all values of 𝐾

 Note that as the extent of non-linearity 

increases, there is little change in the test set 

MSE for the non-parametric KNN method, but 

there is a large increase in the test set MSE of 

linear regression
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 In practice, the true relationship between 𝑋 and 𝑌 is rarely exactly linear

Comparison of Linear Regression with K-Nearest Neighbors



 The figure below considers the same strongly non-linear situation, except that we 

have added additional noise predictors that are not associated with the response

 In fact, the increase in dimension has only caused a small deterioration in the linear regression 

test set MSE, but it has caused more than a ten-fold increase in the MSE for KNN!

 This decrease in performance as the dimension increases is a common problem for KNN!
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Generalizations of the Linear Model

 In much of the rest of this course, we discuss methods that expand the scope of 

linear models and how they are fit:

 Classification problems: logistic regression, support vector machines

 Non-linearity: kernel smoothing, splines and generalized additive models

 Interactions: Tree-based methods, bagging, random forests and boosting (these also capture 

non-linearities)

 Regularized fitting: Ridge regression and lassod
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Reference

 About statistics

 http://www.stat.nthu.edu.tw/~swcheng/Teaching/math2820/index.php

 https://www.youtube.com/playlist?list=PLj6E8qlqmkFvsst4-ww1mrax1D65FQI1m

 https://www.youtube.com/playlist?list=PLblh5JKOoLUK0FLuzwntyYI10UQFUhsY9

 About the proof of linear regression 

 https://en.wikipedia.org/wiki/Proofs_involving_ordinary_least_squares

 https://en.wikipedia.org/wiki/Simple_linear_regression

 About the concept of linear regression 

 https://online.stat.psu.edu/stat501/lesson/3/3.3

 https://online.stat.psu.edu/stat415/lesson/8/8.1

 https://stats.stackexchange.com/questions/85560/shape-of-confidence-interval-for-

predicted-values-in-linear-regression
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Bootstrap for confidence interval

 A graphical illustration of the 

bootstrap approach on a small sample 

containing 𝑛 = 3 observations

 Each bootstrap data set contains 𝑛
observations, sampled with replacement 

from the original data set. Each bootstrap 

data set is used to obtain an estimate of 𝛼
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Bootstrap for confidence interval

1. Generate 𝑛 “bootstrap sample” 

data points 𝑥𝑖
∗, 𝑦𝑖

∗

2. Fit regression using 𝑥𝑖
∗, 𝑦𝑖

∗

3. Evaluate the regression line on 

fix 𝑥-grid

4. Repeat step 1-3 for 𝐵 times 

and collect the values in step 3.

5. For each point in the 𝑥-grid, 

calculate the confidence 

interval using collected value 
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CCPR plot or  Partial regression plot

 The CCPR plot provides a way to judge the effect of one regressor on the 

response variable by taking into account the effects of the other independent 

variables. The partial residuals plot is defined as  residuals+𝛽𝑖𝑋𝑖 versus 𝑋𝑖. The 

component adds 𝛽𝑖𝑋𝑖 versus 𝑋𝑖 to show where the fitted line would lie. Care 

should be taken if  is highly correlated with any of the other independent 

variables. If this is the case, the variance evident in the plot will be an 

underestimate of the true variance.

 https://en.wikipedia.org/wiki/Partial_residual_plot#CCPR_plot

 https://en.wikipedia.org/wiki/Partial_regression_plot (added variable plot)
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Two quotes by famous Statisticians

 “Essentially, all models are wrong, but some are useful” - George Box

 “The only way to find out what will happen when a complex system is 

disturbed is to disturb the system, not merely to observe it passively” - Fred 

Mosteller and John Tukey, paraphrasing George Box
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Interpreting regression coefficients

 The ideal scenario is when the predictors are uncorrelated - a balanced design:

 Each coefficient can be estimated and tested separately

 Interpretations such as “a unit change in 𝑋𝑗 is associated with a 𝛽𝑗 change in 𝑌, while all 

the other variables stay fixed”, are possible

 Correlations amongst predictors cause problems:

 The variance of all coefficients tends to increase, sometimes dramatically

 Interpretations become hazardous - when 𝑋𝑗 changes, everything else changes

 Claims of causality should be avoided for observational data
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